

EDRIVE - MEC

EPSRC Supergen Marine Grand Challenge 1st April 2016 – 31st March 2019

3.2 System modelling – Sizing tool development

Dr. S.P. McDonald

Department of Electrical and Electronic Engineering at Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K. (email: <u>Steve.McDonald@ncl.ac.uk</u>)

Overview

- E-Drive WEC sizing tool
 - Why we need it
 - Aims and limitations
- Dimensioning a representative WEC
 - Tool development
 - Tool predictions
- Next steps and discussion

Why do we need this tool?

- Wide range of variables in WEC's
 - designs, application, wave resource, location, PTO control method etc
- Manufacturer specific data difficult to apply
 - Unique to their own devices, typically IP sensitive
- E-Drive representative WEC and PTO simulation tool required
 - Enables hardware dimensioning and ongoing simulation development for the PTO components
 - Can be used for basic case studies
 - Publishable results

Tool Aims

- Develop much simplified time-domain model for subsequent application in E-Drive PTO development
- Assume monochromatic, deep seas
- Dimension a suitable point absorber WEC for E-Drive
- Enable ongoing simulation of a 25kW rated WEC in typical sea-states

THE UNIVERSITY of EDINBURGH School of Engineering

RLC based Model of WEC and PTO

[1] J. K. H. Shek, D. E. Macpherson, M. A. Mueller, and J. Xiang, "Reaction force control of a linear electrical generator for direct drive wave energy conversion," *IET Renewable Power Generation*, vol. 1, pp. 17-24, 2007.

RIVE

Limitations of 'Shek' approach

- Assumptions in Shek paper:
 - Buoy is small compared to wavelength
 - Force applied by wave is constant i.e K_wcos (ωt+Ø)
 - Drag force is simple function of velocity
 - Heave motion only considered.
 - Assume monochromatic, deep seas
 - Buoy and generator tightly coupled

- But,
 - drag force will vary as a function of buoy:
 - Displacement
 - Frequency
- And,
 - Buoy forces vary due to boundary violations:
 - Buoy restoring force is a assumed to be a linear function of position within the water
 - Turbulence and other complex fluid interactions ignored
- Also,
 - No account taken of pitch and surge forces

Example of restoring force issue

Example of restoring force issue

Enhancements to basic SHEK approach

- Basic 'Shek' approach over-predicts buoy motion at or near resonance, Solutions:
 - Detect major discontinuities
 - Modify relevant forcing/restoring functions accordingly
 - e.g if buoy is out of the water or completely submerged , it can't have a varying buoyancy force.
 - Discontinuities can introduce positional offsets which need to be compensated for by the PTO
 - Incorporate end stops/springs in PTO model

Using the TB-s concept

- Natural resonant frequency of simple point absorber for 25kW prototype does not coincide with desired wave frequency.
- Inclusion of TB-s sphere enables correct tuning of device without the use of springs.

[1] J. Engström, M. Eriksson, J. Isberg, and M. Leijon, "Wave energy converter with enhanced amplitude response at frequencies coinciding with Swedish west coast sea states by use of a supplementary submerged body," *Journal of Applied Physics*, vol. 106, p. 064512, 2009.

THE UNIVERSITY of EDINBURGH School of Engineering

Systems

SUPER(

GRAND CHALLENGES

University

Wave force calculation

Buoy force calculation

Buoy and PTO dynamic models

Example results

Hs = 2.75, T= 7.25s (resonance)

Hs = 2.75, T = 10.25s (off-resonance)

Power predictions

3m diameter, 2m draft buoy with 4.4m diameter TB-s sphere

THE UNIVERSITY of EDINBURGH
School of Engineering

PTO reactive power

3m diameter, 2m draft buoy with 4.4m diameter TB-s sphere

THE UNIVERSITY of EDINBURGH School of Engineering

Converter kVA requirements

THE UNIVERSITY of EDINBURGH School of Engineering

Conclusions

- A 3m diameter, 2m draft point absorber with a 4.4m diameter TB-s sphere is capable of delivering 25kW in selected sea-state for E-drive case study.
- Converter rating of 80kVA is required, assuming ideal generator, to deliver useful range with expected range of sea-states for this WEC.
- Behaviour in confused seas, optimal PTO tuning, energy storage and control all require further analysis. This work feeds into EDU wave to wire model for validation.

Questions

S.P. McDonald

Department of Electrical and Electronic Engineering at Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K. (email: <u>Steve.McDonald@ncl.ac.uk</u>)

