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Overview

e E-Drive WEC sizing tool
e Why we need it
 Aims and limitations

* Dimensioning a representative WEC
e Tool development
e Tool predictions

e Next steps and discussion
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Why do we need this tool?

* Wide range of variables in WEC’s

e designs, application, wave resource, location, PTO control
method etc

 Manufacturer specific data difficult to apply
e Unique to their own devices, typically IP sensitive

e E-Drive representative WEC and PTO simulation tool
required

* Enables hardware dimensioning and ongoing simulation
development for the PTO components

e Can be used for basic case studies
e Publishable results
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Tool Aims

e Develop much simplified time-domain model for
subsequent application in E-Drive PTO
development

 Assume monochromatic, deep seas

 Dimension a suitable point absorber WEC for E-
Drive

* Enable ongoing simulation of a 25kW rated WEC in
typical sea-states
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RLC based Model of WEC and PTO

Electrical Mechanical Equivalent

er Supply voltage 'Force .:applied to buoy due to the
incoming wave
Vfg Generator voltage Force applied on buoy by the
Generator
Current Velocity of buoy
Inductance Mass of buoy. Voltage in inductor

equivalent to force due to any change
in momentum (stored energy as
kinetic energy%MV2 = %le )
Capacitance Spring stiffness — Voltage in capacitor
is equivalent to variation in buoyancy
due to position of buoy in water.
(stored energy as potential energy

pgAh = %cvz)
Resistance Drag due to viscous friction and losses
due to wave generation by the buoy

Generator Generator drag, a representation for

resistance the real power extracted or injected by
the linear machine and converter

Generator Generator reactive power, a

reactance representation for the reactive power

(capacitance) extracted or injected by the linear

machine and converter.

[1] J. K. H. Shek, D. E. Macpherson, M. A. Mueller, and J. Xiang, "Reaction force control of a linear electrical
generator for direct drive wave energy conversion," IET Renewable Power Generation, vol. 1, pp. 17-24, 2007.

Newcastle
Q) university

THE UNIVERSITY of EDINBURGH | |ngtitute for Energy
School of Engineering Systems




¢ ; DRIVE

EPSRC

Engineering and Physical Sciences
Research Council

&

GRAND
CHALLENGES

Limitations of ‘Shek” approach

e Assumptions in Shek paper:
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Buoy is small compared to
wavelength

Force applied by wave is
constanti.e K, cos (ot+ @)

Drag force is simple function
of velocity

Heave motion only
considered.

Assume monochromatic, deep
seas

Buoy and generator tightly
coupled

Systems

* But,

e drag force will vary as a
function of buoy:

e And,

Displacement
Frequency

e Buoy forces vary due to
boundary violations:

e Also,

Buoy restoring force is a
assumed to be a linear
function of position within the
water

Turbulence and other complex
fluid interactions ignored

* No account taken of pitch and
surge forces
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Example of restoring force issue

C—

Cylindrical buoy

!

F, = 2pgAd

F, = 2pgAd

i Buoy just touchin Buoy clear of the
Buoy below Buoy just Buoy at rest Yl i g Y ;
the surface submerged the surface surface




Example of restoring force issue

Cylindrical buoy

T | Fi = 2pgAd
F, = 2pgAd

. . Buoy clear of th
Buoy below Limited operating range for Shek approach oy ¢ efar ofthe
the surface surface
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Enhancements to basic SHEK
approach

e Basic ‘Shek” approach over-predicts buoy motion at
or near resonance, Solutions:
e Detect major discontinuities

e Modify relevant forcing/restoring functions accordingly

e e.gif buoy is out of the water or completely submerged, it
can’t have a varying buoyancy force.

e Discontinuities can introduce positional offsets which
need to be compensated for by the PTO

* Incorporate end stops/springs in PTO model
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Using the TB-s concept

e Natural resonant
frequency of simple point
absorber for 25kW
prototype does not
coincide with desired
wave frequency.

 Inclusion of TB-s sphere
enables correct tuning of
device without the use of

springs.
[1] J. Engstrom, M. Eriksson, J. Isberg, and M. Leijon, "Wave energy
1 pﬁlim&p converter with enhanced amplitude response at frequencies coinciding with Swedish
g fn - west coast sea states by use of a supplementary submerged body," Journal of Applied
2T W Physics, vol. 106, p. 064512, 2009.
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Effect of adding TB-s sphere

Comparison of buoy natural frequency with and without TB-s sphere
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Wave force calculation
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Buoy force calculation

~—=Buoy diameter
= Buoy draft
‘ 1 ———— = Mw factor
= TBS sphere diameter
MW multiplier

Max discpacement force

TBS sphere

197 ) ] select

TBES sphere diameter

TBS select 1 = TBS

Buoy Parmeters
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Buoy and PTO dynamic models
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Example results

Hs = 2.75, T= 7.25s (resonance) Hs = 2.75, T = 10.25s (off-resonance)
2 velocity (source current) > velocity (source current)
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Average power generated
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PTO reactive power

Power factor
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Converter kVA requirements

Converter kVA
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Conclusions

A 3m diameter, 2m draft point absorber with a
4.4m diameter TB-s sphere is capable of delivering
25kW in selected sea-state for E-drive case study.

e Converter rating of 80kVA is required, assuming
ideal generator, to deliver useful range with
expected range of sea-states for this WEC.

e Behaviour in confused seas, optimal PTO tuning,
energy storage and control all require further
analysis. This work feeds into EDU wave to wire
model for validation.
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