

EDRIVE - MEC

EPSRC Supergen Marine Grand Challenge 1st April 2016 – 31st March 2019

5.1 Power Electronics Converter Developments

S.P. McDonald

Department of Electrical and Electronic Engineering at Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K. (email: <u>Steve.McDonald@ncl.ac.uk</u>)

Overview

- Introduction to Electrical Power Converter (EPC)
 - Generator interface
 - Electrical energy storage
 - Grid interface
- Current source converter, generator interface
 - Modular concept
 - Space vector control
 - Initial simulation results

EPC configuration

- Modular approach for fault tolerance
 - machine built in sections
 - minimise ripple currents due to 2nd harmonic in DC-link.
 - Loss of one section will not result in loss of entire WEC output
- Energy storage (EES) is required
 - Rating TBD
 - WEC reactive energy control and power smoothing

Translator

EPC configuration

- Direct grid interface at 11kV assumed
 - Conceptual
 - realistic requirement in WEC array
 - Multilevel inverter with isolation fed by multiple generator interfaces
- Housed within WEC or generator housing
 - Dimensional analysis required

Translator

Generator interface - CSC

Why current source?

- Improved reliability in DC-link over electrolytic caps
- Potentially better utilisation of devices (modulated link current)
- Comparable efficiency due to use of modulated link and RB-IGBT's
- Potentially reduced EMI

Energy Storage

	Supercapacitor	LiNiMnCo battery
Specific Power (W/kg)	500-100,000	500-2400
Energy Density (Wh/L)	10-30	230-550
Specific Energy (Wh/kg)	2.5-15	126-210
Cost (\$/kWh)	300-2000	300-600
Cycle Life	>100000	1200-1950

Other investigators have suggested that supercapacitor ESS could be applied to WEC's [1]. The advantage of the supercapacitor is the relatively high power capability and cycle life, but the energy density is quite low.

[1] G. Brando, A. Dannier, A. D. Pizzo, L. P. D. Noia, and C. Pisani, "Grid connection of wave energy converter in heaving mode operation by supercapacitor storage technology," *IET Renewable Power Generation,* vol. 10, pp. 88-97, 2016.

THE UNIVERSITY of EDINBURGH School of Engineering

Grid interface

- multiple modules integrated to multilevel grid interface
- Details TBD, this is an area for Chile

Grid interface challenges

- no galvanic isolation between the generator module/converter
- Insulate whole chain to withstand MV potential to ground and between generator modules.
 - excessive challenges in the machine design
 - increase the failure risk should one module fail.
 - Incorporating galvanic isolation by utilising a high frequency transformer within the chain is desirable.
- Tolerance of the multilevel inverter to a range of DC voltages at the module level requires further consideration.
 - If the ESS terminal voltage is coupled directly an individual module the overall step levels will change accordingly.
 - There are a number of multilevel inverter topologies based upon the Z-source concept that have built in buck-boost capability and could advantageously be combined with the generator interface and ESS.
- Optimising component count, cost, and reliability and ensuring overall complexity remains manageable.

CSI space vector control

- well-known method for the determination of device switching arrangements in a voltage source PWM inverter.
- Similar approach can be used in Current Source Inverters (CSI) by taking into account the particular switching requirements:
- Only energise two devices at any one time
- new device is energised before the previous device is switched off (overlap time).
- only one device switches at any one transition
- two zero states where no current passes to / from the load
- illegal state of open circuiting the DC link replaced by a Z –state switching off all of the upper or all of the lower devices to charge the Z-source network.

Sector definition

Vector control within sector

PLECS model for CSI

THE UNIVERSITY of EDINBURGH School of Engineering

School of Engineering Systems

Conclusions

- Modular topology selected for E-Drive
- CSC functionality for the E-Drive application has been validated by simulation
- Next steps:
 - Component dimensions, ESS requirements and comparative analysis with VSC
 - Prototype development
 - Control development

Questions

S.P. McDonald

Department of Electrical and Electronic Engineering at Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K. (email: <u>Steve.McDonald@ncl.ac.uk</u>)

